Controlled particle growth of silver sols through the use of hydroquinone as a selective reducing agent.

نویسندگان

  • Stuart T Gentry
  • Stephen J Fredericks
  • Robert Krchnavek
چکیده

Hydroquinone (HQ) was used as the principal chemical reducing agent to prepare aqueous silver nanocolloids from silver nitrate. The data demonstrate that HQ is unable to initiate the particle growth process on its own, but is able to sustain particle growth in the presence of pre-existing metallic clusters. This unique selectivity is similar to that seen in photographic systems. Data are presented on two different approaches to initiating the HQ growth process. Very low levels of sodium borohydride can be used to form seed particles. Alternatively, the data show that controlled growth can be initiated by exposing the samples to UV radiation, relying on the photoreactivity of hydroquinone to start the process. These results were used to explore the dynamics of very dilute NaBH4 seed particles. They also were used to create nonspherical disk and triangular-plate morphologies directly from solution, without the need for subsequent reformation or template processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Green Synthesis of Silver Nanoparticles Using Mentha aquatic L Extract as the Reducing Agent

Background: Developing effective methods for the synthesis of bio-compatible and non-toxic nanoparticles is the main goal of nanotechnology. In the most chemical methods, a chemical reducing agent is used to reduce metal ions. But, in chemical methods, the stability of nanoparticles is controversial and synthesis in large sizes is much more difficult. Moreover, there is an incr...

متن کامل

Synthesis, morphological, characterization and evaluation of antibacterial effects of Silver-Polyaniline nanocomposites against Escherichia coli

Silver-Polyaniline (Ag-PANI) nanocomposites were prepared by in-situ oxidative polymerization of aniline monomer in sodium bis(2-ethylhexyl) sulfosuccinate (AOT) solution as an emulsifier. The synthesis of Silver-Polyaniline nanocomposites was investigated as a function of several parameters such as aniline concentration, concentration of emulsifier (AOT), concentration of oxidation agent and c...

متن کامل

Synthesis, morphological, characterization and evaluation of antibacterial effects of Silver-Polyaniline nanocomposites against Escherichia coli

Silver-Polyaniline (Ag-PANI) nanocomposites were prepared by in-situ oxidative polymerization of aniline monomer in sodium bis(2-ethylhexyl) sulfosuccinate (AOT) solution as an emulsifier. The synthesis of Silver-Polyaniline nanocomposites was investigated as a function of several parameters such as aniline concentration, concentration of emulsifier (AOT), concentration of oxidation agent and c...

متن کامل

High-Yield Synthesis of Gold Nanorods with Longitudinal SPR Peak Greater than 1200 nm Using Hydroquinone as a Reducing Agent

While gold nanorods have been extensively studied and used in many biological, plasmonics, and sensing applications, their conventional seed-mediated synthesis still presents a number of limitations. Its high sensitivity to the concentration of the reducing agent (ascorbic acid) leads to problems with reliability as well as extremely poor yield of ionic-to-metallic gold conversion, which is onl...

متن کامل

A facile and rapid method for green synthesis of Silver Myco nanoparticles using endophytic

The Myco silver nanoparticles (AgNPs) are synthesized through bio-reduction reaction of silver nitrate by cell-free filtrate of endophytic fungi, which act as both reducing and capping agent. The synthesis of silver nanoparticles (AgNPs) was confirmed through UV-VIS spectroscopy, Fourier Transform Infrared (FTIR), Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM). Energ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 25 5  شماره 

صفحات  -

تاریخ انتشار 2009